mTOR signaling contributes to motor skill learning in mice

نویسندگان

  • Yan Bergeron
  • Laure Chagniel
  • Geneviève Bureau
  • Guy Massicotte
  • Michel Cyr
چکیده

The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is suspected to be involved in various long-lasting forms of synaptic and behavioral plasticity. However, its role in motor learning and control has never been examined. This study investigated, in mice, the implication of mTOR in the learning processes associated with the accelerating rotarod task. We first observed that the rotarod learning did not alter the levels of total mTOR in the striatum, hippocampus, cerebellum, and anterior cortex of trained mice. However, it increased the levels of phosphorylated mTOR in the striatum and hippocampus exclusively during the first session of training; no change was observed at the second and third sessions. In order to further investigate the potential role of mTOR during motor skill learning, we performed systemic and intrastriatal inhibitions of mTOR using the pharmacological inhibitor rapamycin, as well as a genetic knockdown of striatal mTOR using intrastriatal infusion of mTOR siRNA. These three independent approaches were all associated with a significant reduction in rotarod performances that were reminiscent of impaired consolidation processes. Notably, these treatments did not affect the capacity of mice to execute the pole test, suggesting that mTOR activity was mainly controlling motor learning rather than motor abilities. Moreover, all treatments decreased the levels of phosphorylated 4EBP1 and P70S6K, two molecular downstream targets of mTORC1. Our findings demonstrate that striatal mTOR kinase, via the phosphorylation of 4EBP1 and P70S6K, plays an important role in the cellular and molecular processes involved in motor skill learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic Morphine Preconditioning: Interaction of mTOR and iNOS in protection against Ischemia/Reperfusion injury

Chronic morphine (CM) treatment increases the phosphorylation of the mammalian target of rapamycin (mTOR), which confers neuroprotection against ischemia/reperfusion (I/R) injury. Besides its important regulatory role in the proliferation, metabolism, and survival of cells, the mTOR is critically involved in intracellular signaling events during I/R injury. In the present study, we investigated...

متن کامل

Chronic Morphine Preconditioning: Interaction of mTOR and iNOS in protection against Ischemia/Reperfusion injury

Chronic morphine (CM) treatment increases the phosphorylation of the mammalian target of rapamycin (mTOR), which confers neuroprotection against ischemia/reperfusion (I/R) injury. Besides its important regulatory role in the proliferation, metabolism, and survival of cells, the mTOR is critically involved in intracellular signaling events during I/R injury. In the present study, we investigated...

متن کامل

Motor-Skill Learning Is Dependent on Astrocytic Activity

Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To ...

متن کامل

P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases

Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...

متن کامل

Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice

Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014